Image Retrieval Using Deep Convolutional Neural Networks and Regularized Locality Preserving Indexing Strategy
نویسندگان
چکیده
Convolutional Neural Networks (CNN) has been a very popular area in large scale data processing and many works have demonstrate that CNN is a very promising tool in many field, e.g., image classification and image retrieval. Theoretically, CNN features can become better and better with the increase of CNN layers. But on the other side more layers can dramatically increase the computational cost on the same condition of other devices. In addition to CNN features, how to dig out the potential information contained in the features is also an important aspect. In this paper, we propose a novel approach utilize deep CNN to extract image features and then introduce a Regularized Locality Preserving Indexing (RLPI) method which can make features more differentiated through learning a new space of the data space. First, we apply deep networks (VGG-net) to extract image features and then introduce Regularized Locality Preserving Indexing (RLPI) method to train a model. Finally, the new feature space can be generated through this model and then can be used to image retrieval.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملLocality Constrained Deep Supervised Hashing for Image Retrieval
Deep Convolutional Neural Network (DCNN) based deep hashing has shown its success for fast and accurate image retrieval, however directly minimizing the quantization error in deep hashing will change the distribution of DCNN features, and consequently change the similarity between the query and the retrieved images in hashing. In this paper, we propose a novel Locality-Constrained Deep Supervis...
متن کاملDeep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss
Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissim...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کامل